Световые и звуковые приборы своими руками

СВЕТОВОЙ ПРИБОР ДЛЯ ДИСКОТЕК СВОИМИ РУКАМИ

Данный прибор предназначен для светового оформления концертных программ, шоу и дискотек. Схема “светового ежа” показана на рисунке. Основа узла управления шаговым двигателем М2, вращающим рефлектор, — микроконтроллер PIC12C508A, в память программ которого с помощью программатора следует записать коды из таблицы. Все прошивки для МК вы можете скачать на форуме.

Сформированные контроллером сигналы поступают на обмотки шагового двигателя М2 через транзисторные ключи микросхемы ULN2004. Каждый ее выход снабжен защитным диодом, причем общий катод диодов соединен с выводом 9. Таким образом, обмотки двигателя зашунтированы диодами, подавляющими коммутационные выбросы напряжения. Программой предусмотрено пять различных скоростей и два направления вращения рефлектора. Различные сочетания этих параметров и создают световые эффекты. Если контакты выключателя SA1 замкнуты, смена сочетаний скорость/направление происходит периодически по программе. В противном случае (выключатель разомкнут) смена синхронизирована импульсами, поступающими на вывод 4 микросхемы DD1.

Формирователь импульсов в такт с ритмом музыкального произведения собран на микросхеме DA1. Каскад на ОУ DA1.1 усиливает принятый микрофоном BM1 звуковой сигнал музыкального сопровождения. Резистор R3 — регулятор усиления. Далее через фильтр R7C6R8C7 сигнал поступает на вход усилителя на ОУ DA1.2, охваченного АРУ (автоматической регулировкой усиления), поддерживающей амплитуду сигнала на выходе DA1.2 постоянной независимо от громкости музыки. Детектор АРУ собран на диоде VD5, фильтр — R12C8, исполнительный элемент — транзистор VT1. Амплитудным детектор на диоде VD6 с фильтром R16R17C14 и повторителем DA1.3 выделяют огибающую музыкального сигнала. Пороговое устройство на ОУ DA1.4 с узлом задержки повторного срабатывания превращает огибающую в прямоугольные импульсы, поступающие на вход GP3 микроконтроллера DD1.

Мощность трансформатора Т1 должна быть больше мощности лампы ЕL1 не менее чем на 20 Вт. Напряжение на вторичной обмотке этого трансформатора при подключенной лампе должно составлять 10-12 B. В качестве основной лампы EL1 пригодна любая осветительная мощностью до 100 Вт. Кроме мощности, лампы классифицируют по цветовой температуре, чем она ниже, тем “краснее” свет. Обычные лампы накаливания характеризуются сравнительно низкой цветовой температурой, поэтому лучи цветов, лежащих в синей области спектра, покажутся тусклыми. У галогенных ламп этот показатель выше, но срок службы меньше. Рекомендуется использовать галогенную лампу КГМ12-100-2 мощностью 100 Вт. Возможные замены – лампы КГМ12-100 или FSR12-100. В крайнем случае можно взять автомобильные лампы для противотуманных фар. Устанавливая лампу, следует учитывать, что ее спираль должна быть обращена к рефлектору светящейся поверхностью наибольшей площади, а центр этой поверхности — находиться на оптической оси прибора, обозначенной на рис. 1 штрих пунктирной линией. Ширина защитного экрана на 5 мм больше диаметра колбы лампы. Так как рабочая температура колбы галогенной лампы EL1 превышает 250 °С, без принудительной вентиляции в замкнутом внутреннем пространстве “ежа” лампа может перегреться вплоть до размягчения и деформации колбы. Под воздействием высокой температуры нередко разрушается панель лампы, отказывают электронные компоненты блока управления двигателем. Для охлаждения прибора применен вентилятор от блока питания компьютера.

Приводом рефлектора служит шаговый двигатель ДШР-39. Возможная замена — ПБМГ-200, применявшийся в приводах пятидюймовых гибких магнитных дисков для компьютеров. Линза-объектив прибора — двукратная лупа с фокусным расстоянием 192 мм. Подойдет и другая диаметром не менее 100 мм и с фокусным расстоянием 150. 300 мм. Приблизительно определить последнее можно, сфокусировав на какой-либо негорючей поверхности изображение солнечного диска. Расстояние от линзы до поверхности и есть фокусное. На фото ниже вы видите используемую мной для светового прибора лупу.

Корпус “светового ежа” делают из любого листового металла. Пластмассу, фанеру и другие материалы с плохой теплопроводностью и термостойкостью применять не рекомендуется. Диаметр отверстия под линзу на 5 мм меньше ее диаметра. Линзу крепят по периметру несколькими зажимами.

Налаживание узла управления начинают с проверки напряжения на выходах интегральных стабилизаторов DA2 (9 В) и DA3 (5 В). Замкнув выключатель SA1, с помощью осциллографа проверяют наличие прямоугольных импульсов периодически изменяющейся частоты на выводах 2, 3, 5 и 6 микроконтроллера DD1. Если их нет, микроконтроллер неисправен или неправильно запрограммирован. Аналогичные импульсы, но амплитудой приблизительно 12 В, должны быть на выводах 14,13,11,10 микросхемы DD2. Если на одном из них импульсов нет, а напряжение равно нулю, причиной может быть обрыв обмотки двигателя М2. Затем включают музыку с басами – барабанами. На экране осциллографа, подключенного к выходу ОУ DD1.1 (вывод 6), должна быть видна осциллограмма музыкального сигнала, амплитуду которого регулируют с помощью подстроечного резистора R3. При ее десятикратном изменении амплитуда сигнала на выходе DD1.2 (вывод 14) должна оставаться приблизительно равной 3 В. В противном случае необходимо проверить исправность транзистора VT1 и связанных с ним элементов. Постоянный уровень пару вольт на выходе DA1.3 во время звучания музыки должен сопровождаться всплесками в такт сильной доле произведения. Напряжение на выводе 6 DA1.4 — приблизительно 4 В — немного изменяется в зависимости от характера музыки.

Остается проверить наличие прямоугольных положительных импульсов на выходе DA1.4 (вывод 7). Их длительность зависит от параметров цепи C16 R23 и должна составлять 100 мс. Устранить пропуски или несвоевременную выдачу импульсов удается подборкой номинала резистора R19. Не буду точно утверждать, что использовал контроллер PIC12C508, не вспомню уже, но что использовал PIC12C508A и PIC12C509A – это 100%. Использовал программатор EXTRA PIC – схема на форуме. Прошивал в ICProg. Никаких изменений в исходник не вносил. Указывал в программе именно тот контроллер, который стоит в постельке. Приборы работают в обоих режимах. Видеоролик работы самодельного дискотечного прибора смотрите тут:

От встроенной программы – отрабатывают прошитую программу. А от музыки – просто без музыки останавливается, а при музыке запускается та-же встроенная программа. Конструкцию собрал и испытал: Romick_Калуга

10 Лучших Схем Светомузыки

Конструирование и программирование на Ардуино меня не привлекает – слишком просто! Готовые модули покупаемые в магазине и готовые программы скачиваемые с сети , увы не оставляют фантазии и творчеству места. Для болезных, воспринимающих критику в адрес LEGO и UNO как личное оскорбление, замечу , что написать “скетч” (программу) и собрать на конструкторе Ардуино любую конструкцию я могу в два счета и, чтоб не “трепаться” вот вам парочка ссылок
https://youtu.be/GAGo0nwvyac
Сонар Измеряющий Расстояние
А вот конструкции на “рассыпухе” требующие знаний, навыков и умения мыслить не только логически, но и творчески мне приятны и интересны.

Я решил вспомнить старые схемы и постараться собрать одну из них как делал это в далекие Советские годы.
Мальчишки моего времени, даже не имевшие собственных магнитофонов, мечтали собрать из радиодеталей казавшееся фантастическим в те годы устройство – СВЕТОМУЗЫКУ. Наблюдая в кино как под музыкальное сопровождение вспыхивают разноцветные лампы, в голове сразу возникали идеи сделать нечто подобное. и ведь делали. У меня до сих пор хранится в исправном состоянии моя собственная установка, пережившая и школьные и студенческие вечеринки и приводившая в восторг моих знакомых.

Будет полезно:  2019 bentley bentayga v-8 первый выезд

Прежде чем делать цветомузыкальную установку, я решил рассмотреть несколько схем наиболее популярных у самодельщиков и выяснить – какая из этих схем для меня будет наиболее удобна.

На заставке старая , проверенная временем схема на транзисторах , печатавшаяся в множестве популярных журналов, включая Радио и ЮТ.

Давайте рассмотрим схемы по порядку

Эта схема проста и безопасна для сборки и испытания даже начинающим электронщикам. Схема собрана на четырёх транзисторах, в качестве излучателей могут быть применены маломощные лампочки накаливания.
В этой схеме используются самые простые фильтры звуковых частот и регулировка уровня сигнала на каждый световой канал.
Предусилитель на мой взгляд слишком усложнен для стой простой светомузыки.

Эта схема упрощена , по сравнению с первой. в ней отсутствует предусилитель и для её работы требуется достаточно мощный усилитель звуковых сигналов. В схеме присутствуют резисторы для управления яркостью свечения каналов и использованы слишком сложные R C фильтры , их можно было сделать и проще.
Схема безопасна по питанию и рассчитана на батареи или низковольтные источники питания.

Схема на парах Дарлингтона иил составных транзисторах хороша тем, что не требует дополнительного усиления входного сигнала. Тут так же присутствует регулировка уровня света с помощью входных переменных резисторов. Как и первые две – эта схема проста и безопасна для сборки и испытания даже начинающим электронщикам. Особенностью данной схемы является индуктивный фильтр низких частот. В своё время я использовал именно такие фильтры из проволочных катушек.

В этой схеме можно обойтись меньшим числом транзисторов, установив на входе предварительный усилитель звукового сигнала на одном транзисторе. Схема проста и логична. Такую светомузыку можно подключать непосредственно к сотовому телефону или компьютеру.
Регулировок каналов эта схема не имеет!
Как и предыдущие схемы тут используется питания от батарей и низковольтных источников питания, а значит её можно собирать детям и начинающим радиолюбителям.

Эта схема с упрощенными фильтрами использует входной трансформатор, что совсем не рационально для низковольтных схем. Обычно трансформаторы используются для гальванической развязки при построении схем на тиристорах с лампочками на 220 вольт. В остальном эта схема схожа с предыдущими – Три канала и регулировки на каждом.

В этой схеме используются три силовых ключа на полевых транзисторах. Это позволяет зажигать более мощные лампочки накаливания.
Такая схема усложнена – транзисторы указанные в первом каскаде и так достаточно мощные, кроме того – Использование высокоомных по входу полевых транзисторов с низкоомными по выходу Биполярными не очень правильно. В добавок включение полевых транзисторов подобным образом без резисторов обвязки (сток, исток) приведет к их нестабильной работе и поломке.

Схему можно исправить – убрав биполярные транзисторы и добавив резисторы на затворы полевиков.

СЛЕДУЮЩИЕ СХЕМЫ ДЛЯ ОПЫТНЫХ РАДИОЛЮБИТЕЛЕЙ
Схемы с напряжением 220 вольт опасны

Тиристорная светомузыка это верх крутизны мальчишек моего детства.
Мало того что достать тиристоры было очень сложно в моих краях, так и работать с напряжением 220 вольт решались не многие, ограничиваясь разговорами и пересказами о том, что знают тех кто что то такое делал.

Первая схема проста и банальна – Классика тиристоров КУ202Н используется вместо транзисторов под управлением звукового сигнала.
Вот тут как раз и нужен трансформатор гальванической развязки – он устанавливается на входе трех простейших фильтров из резисторов и конденсаторов. Тиристоры не очень чувствительны к управлению звуком, так что громкость на входе должна быть внушительной – иначе ничего светиться не будет.

Вторая схема отличается от первой только упрощением – в ней отсутствует регулировка уровня входного сигнала и регулировки по кагалам цветов. Как проще и полезнее – фильтры тут самые простые.

На монтажной схеме можно увидеть примерное расположение деталей светомузыки и перемычек между деталями.

Теперь откинув схемы с ошибками и слишком усложненные, можно заняться подбором деталей дя будущей светомузыки. В наше время с деталями проблем нет вовсе, да и подыскать схему подходящую по потребностям в сети хоть и трудно но можно.

Я буду делать светомузыку немного не так – фантазии никто не запрещал и кое что я добавлю а кой чего и отрежу =)

Динамика света и управление

Для получения динамики в световом оформлении помимо источника питания необходим управляющий сигнал, под воздействием которого будет происходить изменение световой картины.

Существует два основных способа управления динамикой света: независимое и зависимое управление от звукового сигнала. Управление динамикой света можно осуществить с помощью следующих устройств:

  1. Цветомузыкальные устройства (цветомузыка)
  2. Приборы с функцией звуковой активации
  3. Музыкально-управляемые автоматы световых эффектов

Цветомузыкальные устройства (цветомузыка). Управление от звукового сигнала в них осуществляется следующим образом. С помощью электрических фильтров общий звуковой сигнал разделяется на несколько частотных диапазонов, уровень сигнала в каждом из которых в конечном счете управляет яркостью свечения соответствующих этим каналам источников света – ламп или светодиодов. Чем выше уровень сигнала в канале, тем ярче горят источники света, соответствующие этому каналу. Таким образом, световые картины изменяются в зависимости от характера музыкальных композиций. С помощью цветомузыки можно реализовать один из самых впечатляющих эффектов – синхронизация по ритму, если один канал цветомузыки настроить на частоту звучания бас-бочки, а вторую – на ведущий.

Приборы с функцией звуковой активации. Функцию звуковой активации могут иметь как сами световые приборы (дискотечные приборы эффектов, проекторы, лазеры и др.), так и пульты управления световым оборудованием и приборами. Первое подразумевается чаще. Работа световых приборов в режиме звуковой активации заключается в том, что из поступающего звука с помощью фильтра производится выделение сигнала управления, который затем управляет режимом работы прибора. Реализаций схем управления может быть много, например, из низкочастотного спектра (например, от бас-бочки) формируются импульсы. Эти импульсы поступают на счетчик. После поступления n-го импульса счетчик формирует управляющий сигнал, который изменяет режим работы светового прибора – происходит изменение движения луча, изменяется программа работы, изменяется направления вращения прибора и др. То есть, звуковой сигнал управляет режимом работы светового прибора. Поэтому цветомузыка и прибор с функцией звуковой активации это принципиально разные устройства, с принципиально разным управлением динамикой света и принципиально разным световым эффектом. В цветомузыке световые картины зависят от характера музыки (темп, спектр частот сигнала, динамика композиции), в то время как работа многих световых приборов от звуковой активации будет выглядеть как беспорядочное включение и движение лучей, никак не синхронизированных с музыкой.

Музыкально-управляемые автоматы световых эффектов. Идея работы данного типа приборов аналогична тому, как это реализовано в приборах с функцией звуковой активации – из звукового сигнала выделяются импульсы, которые управляют режимом работы автомата световых эффектов или скоростью эффекта. Последнее как раз и позволяет получить синхронизацию между ритмом музыкальной композиции и скоростью работы эффекта. Достоинства данного типа приборов – невысокая стоимость стоимость и простота в обслуживании. Если в таком приборе хорошо отстроена синхронизация по ритму, то можно получить весьма динамичный эффект, когда группы ламп переключаются точно в доли ритма. В конце прошлого века подобное управление являлось основой для светового оформления выступлений многих известных музыкальных групп.

Будет полезно:  Топливный фильтр ваз 2109: инжектор и карбюратор, фото- и видеообзор

Устройства с независимым управлением от звукового сигнала. Это могут быть всё те же автоматы световых эффектов, в которых управление производится не от звукового сигнала, а от задающего генератора. Другим примером подобного рода устройств являются проекторы световых эффектов, например, пламени, воды, звездного неба, большая часть моторизированных приборов – шары, полусферы, грибы и др. Вращающийся зеркальный шар и стробоскоп – это также устройства с независимым от звукового сигнала управлением.

Характер управления будет зависеть не только от того, какой вариант Вы выберите, но и от того, какой эффект Вы хотите получить. Преимущество цветомузыки перед всеми остальными устройствами заключается в возможности автономного управления от музыки, при котором нет необходимости постоянно ей управлять. А вот корректировать цветомузыку придется, поскольку, если частоты ритм-секции композиций отличаются друг от друга. Если автомат световых эффектов с независимым управлением от звука используется для получения динамичного света, то он потребует управления со стороны человека, поскольку для быстрых музыкальных композиций нужно увеличивать скорость эффекта, а для медленных – уменьшить. Если же автомат световых эффектов используется в качестве декоративного эффекта, то данную коррекцию можно не проводить – автомат будет циклически воспроизводить запрограммированный набор эффектов. Если же требуется синхронизировать музыкальный материал с работой световых приборов, то потребуется либо оперативное управление ими, либо предварительное программирование. В противном случае работа световых приборов, как Вы увидите дальше, будет весьма отдаленно соответствовать музыкальным композициям.

СХЕМА СВЕТОВОГО ПРИБОРА

Начинать сборку светового прибора необходимо с изготовления отражателя и подбора линзы. Отражатель изготовил из обычной шумовки с относительно ровной сферической формой. Затем покрасил её изнутри чёрной краской, а потом наклеил на внутреннюю поверхность кучу мелких цветных дихроичных зеркал размером 10х10мм. Отражатель укреплён на шаговом двигателе (любом с 6 выводами). На рисунке и на фото видно, как располагаются линза, лампа и отражатель.

Расстояние между линзой, лампой и отражателем я определял опытным путём, передвигая их местами. Лампа от линзы закрыта металлической перегородкой. В результате нужно получить на стене или экране на расстоянии примерно 6 метров множество ЧЁТКИХ. цветных лучей в форме спирали лампы. Если этого не достигнуть, работу светового прибора можно не продолжать. В этом случае нужно поменять линзу. Здесь главное подобрать такую линзу, чтобы расстояния были по возможности минимальными. От этого будет зависеть размер корпуса по длине.

Теперь можно приступать к трансформатору. Для своих световых приборов использую трансформаторы от старых чб телевизоров, типа ТС-180. Полностью сматываю с трансформатора все обмотки (до первичной) и наматываю на каждую катушку по 40 витков медного провода диаметром 1,5мм. Выходит 2 обмотки по 12вольт. Одну из них использую для питания схемы светового прибора, а вторую, соединённую последовательно с первой – для питания лампы и шагового двигателя.

Когда всё готово, можно кроить корпус. Для корпуса применяю либо оцинкованную жесть, либо металл от крышек корпусов старых компьютеров. Детали вычерчиваются по размерам из рисунка 02. Длина корпуса светового прибора в 300мм, проставлена условно. Она может быть и больше. Окончательно определить её можно, приставив к линзе, лампе и отражателю, укреплённом на ШД, трансформатор. Вырезанные заготовки сгибаю под углом 45 градусов на гибочном устройстве. Отверстие для установки вентилятора и отдушина для выхода горячего воздуха закрываются крышками.

Переднюю и заднюю стенки светового прибора креплю на болтах, а крышку – на саморезах.

По бокам прикручены болты под П-образную ручку для подвески прибора к стене или потолку. Болты диаметром 8-10мм прикручиваются обязательно с гроверами.

Когда корпус со всеми необходимыми отверстиями будет готов, его можно красить. Но сначала нужно укрепить на дне вентилятор и прикрутить на него крышку. Чтобы лопасти не закрасились, на них нужно буквально капелькой клея наклеить картонный круг по диаметру, который удаляется после покраски. Сначала покрывем корпус автомобильным антикорром «BODY-950» – аэрозоль чёрного цвета. Это придаёт поверхности «фирменный» шершавый вид. После сушки красим корпус чёрной (или любой другой) блестящей краской.

Приступаем к сборке внутренностей. Крепим линзу, лампу и отражатель с двигателем, трансформатор и плату. Разводим провода и запускаем схему. Микрофон и тумблер режимов «микр» и «авт» находятся на задней стенке прибора.

Простые схемы цветомузыки на светодиодах и светодиодных лентах для сборки своими руками

Неисчерпаемый потенциал светодиодов в очередной раз раскрылся в конструировании новых и модернизации уже имеющихся цветомузыкальных приставок. 30 лет назад пиком моды считалась цветомузыка, собранная из разноцветных лампочек на 220 вольт, подключенных к кассетному магнитофону. Сейчас ситуация изменилась и функцию магнитофона теперь выполняет любое мультимедийное устройство, а вместо ламп накаливания устанавливают сверхъяркие светодиоды или светодиодные ленты.

Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы:

  • широкая цветовая гамма и более насыщенный свет;
  • различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки);
  • высокая скорость срабатывания;
  • низкое энергопотребление.

Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.

Простейшая схема с одним светодиодом

Для начала следует разобраться с простой схемой цветомузыки, собранной на одном биполярном транзисторе, резисторе и светодиоде. Питание на неё можно подавать от источника постоянного тока напряжением от 6 до 12 вольт. Работает данная цветомузыка на одном транзисторе по принципу усилительного каскада с общим эмиттером. Возмущающее воздействие в виде сигнала с изменяющейся частотой и амплитудой поступает на базу VT1. Как только амплитуда колебаний превышает некоторое пороговое значение, транзистор открывается и светодиод вспыхивает.

Недостаток данной простейшей схемы состоит в том, что темп мигания светодиода полностью зависит от уровня звукового сигнала. Другими словами, полноценный цветомузыкальный эффект будет наблюдаться только на одном уровне громкости. Снижение громкости приведёт к редкому подмигиванию, а увеличение – к почти постоянному свечению.

Схема с одноцветной светодиодной лентой

Простейшая вышеприведенная цветомузыка на транзисторе может быть собрана с использованием светодиодной ленты в нагрузке. Для этого нужно увеличить напряжение питания до 12В, подобрать транзистор с наибольшим током коллектора превышающим ток нагрузки и пересчитать номинал резистора. Такая простейшая цветомузыка из светодиодной ленты прекрасно подойдёт начинающим радиолюбителям для сборки своими руками даже дома.

Простая трёхканальная схема

Избавиться от недостатков предыдущей схемы позволяет трёхканальный преобразователь звука. Самая простая схема цветомузыки с разделением звукового диапазона на три части показана на рисунке. Питается она постоянным напряжением 9В и может засветить один или два светодиода в каждом канале. Состоит схема из трёх независимых усилительных каскадов, собранных на транзисторах КТ315 (КТ3102), в нагрузку которых включены светодиоды разного цвета. В качестве элемента для предварительного усиления можно использовать небольшой сетевой трансформатор понижающего типа.

Входной сигнал подаётся на вторичную обмотку трансформатора, который выполняет две функции: гальванически развязывает два устройства и усиливает звук с линейного выхода. Далее сигнал поступает на три параллельно включенных фильтра, собранных на базе RC-цепей. Каждый из них работает в определённой полосе частот, которая зависит от номиналов резисторов и конденсаторов. Низкочастотный фильтр пропускает звуковые колебания частотой до 300 Гц, о чем свидетельствует мигание красного светодиода. Через фильтр средних частот проходит звук в диапазоне 300-6000 Гц, что проявляется в мерцании синего светодиода. Высокочастотный фильтр пропускает сигнал, частота которого больше 6000 Гц, что соответствует зелёному светодиоду. Каждый фильтр оснащен подстроечным резистором. С их помощью можно задать равномерное свечение всех светодиодов, независимо от музыкального жанра. На выходе схемы все три отфильтрованных сигнала усиливаются транзисторами.

Если питание схемы осуществляется от низковольтного источника постоянного тока, то трансформатор можно смело заменить однокаскадным транзисторным усилителем. Во-первых, гальваническая развязка теряет практический смысл. Во-вторых, трансформатор в несколько раз проигрывает схеме, показанной на рисунке, по массе, размерам и себестоимости. Схема простого усилителя звуковой частоты состоит из транзистора КТ3102, двух конденсаторов, отсекающих постоянную составляющую, и резисторов, обеспечивающих транзистору режим с общим эмиттером. С помощью подстроечного резистора можно добиться общего усиления слабого входного сигнала.

В случае когда необходимо усилить сигнал с микрофона, ко входу предыдущей схемы подключают электретный микрофон, подавая на него потенциал от источника питания. Схема двухкаскадного предварительного усилителя показана на рисунке. В данном случае подстроечный резистор стоит на выходе первого усилительного каскада, что даёт больше возможностей для регулировки чувствительности. Конденсаторы С1-С3 пропускают полезную составляющую и отсекают постоянный ток. Для реализации подойдёт любой электретный микрофон, для нормальной работы которого достаточно смещения 1,5В.

Цветомузыка с RGB светодиодной лентой

Следующая схема цветомузыкальной приставки работает от 12 вольт и может устанавливаться в автомобиле. Она совместила в себе основные функции ранее рассмотренных схемотехнических решений и способна работать в режиме цветомузыки и светильника.

Первый режим достигается за счёт бесконтактного управления RGB-лентой при помощи микрофона, а второй – за счёт одновременного свечения красного, зелёного и синего светодиодов на полную мощность. Выбор режима осуществляется при помощи переключателя, размещенного на плате. Теперь остановимся подробно на том, как сделать цветомузыку, которая отлично подойдет даже для установки в авто, и какие детали для этого потребуются.

Структурная схема

Чтобы понять, как работает данная цветомузыкальная приставка, сначала рассмотрим её структурную схему. Она поможет проследить полный путь прохождения сигнала. Источником электрического сигнала является микрофон, который преобразует звуковые колебания от фонограммы. Т.к. этот сигнал чрезмерно мал, его необходимо усилить при помощи транзистора или операционного усилителя. Далее следует автоматический регулятор уровня (АРУ), который удерживает колебания звука в разумных пределах и подготавливает его к дальнейшей обработке. Фильтры разделяют сигнал на три составляющие, каждая из которых работает только в одном частотном диапазоне. В конце остаётся только усилить подготовленный токовый сигнал, для чего используют транзисторы, работающие в ключевом режиме.

Принципиальная схема

На основании структурных блоков, можно перейти к рассмотрению принципиальной схемы. Её общий вид представлен на рисунке. Для ограничения тока потребления и стабилизации питающего напряжения установлен резистор R12 и конденсатор С9. Для задания напряжения смещения микрофона установлены R1, R2, C1. Конденсатор Cfc подбирается индивидуально к конкретной модели микрофона в процессе наладки. Он нужен для того, чтобы немного приглушить сигнал той частоты, которая превалирует в работе микрофона. Обычно снижают влияние высокочастотной составляющей.

Нестабильное напряжение автомобильной сети может оказывать влияние на работу цветомузыки. Поэтому наиболее правильно подключать самодельные электронные устройства через стабилизатор на 12В.

Звуковые колебания в микрофоне преобразуются в электрический сигнал и через С2 поступают на прямой вход операционного усилителя DA1.1. с его выхода сигнал следует на вход операционного усилителя DA1.2, снабженного цепью обратной связи. Сопротивления резисторов R5, R6 и R10, R11 задают коэффициент усиления DA1.1, DA1.2 равный 11. Элементы цепи ОС: VD1, VD2, C4, C5, R8, R9 и VT1 вместе с DA1.2 входят в состав АРУ. В момент возникновения на выходе DA1.2 сигнала слишком большой амплитуды транзистор VT1 открывается и через С4 замыкает входной сигнал на общий провод. Это приводит к мгновенному снижению напряжения на выходе.

Затем стабилизированный переменный ток звуковой частоты проходит через отсекающий конденсатор С8, после чего разделяется на три RC-фильтра: R13, C10 (НЧ), R14, C11, C12 (СЧ), R15, C13 (ВЧ). Чтобы цветомузыка на светодиодах светила достаточно ярко, нужно усилить выходной ток до соответствующего значения. Для ленты с потреблением до 0,5А на каждый канал подойдут транзисторы средней мощности типа КТ817 или импортный BD139 без монтажа на радиатор. Если собираемая светомузыка своими руками предполагает нагрузку около 1А, то транзисторам потребуется принудительное охлаждение.

В коллекторах каждого выходного транзистора (параллельно выходу) стоят диоды D6-D8, катоды которых объединены между собой и выведены на переключатель SA1 (White light). Второй контакт переключателя соединён с общим проводом (GND). Пока SA1 разомкнут, схема работает в режиме цветомузыки. При замыкании контактов переключателя все светодиоды в ленте зажигаются на полную яркость, образуя в сумме белый поток света.

Печатная плата и детали сборки

Для изготовления печатной платы понадобится односторонний текстолит размером 50 на 90 мм и готовый файл .lay, который можно скачать здесь. Для наглядности плата показана со стороны радиоэлементов. Перед выводом на печать необходимо задать её зеркальное отображение. В слое М1 показаны 3 перемычки, размещаемые на стороне деталей. Для сборки цветомузыки из светодиодной ленты своими руками понадобятся доступные и недорогие компоненты. Микрофон электретного типа, подойдет в защитном корпусе со старой аудио аппаратуры. Светомузыка собрана на микросхеме TL072 в DIP8 корпусе. Конденсаторы, независимо от типа, должны иметь запас по напряжению и быть рассчитаны на 16В или 25В. При необходимости конструкция платы позволяет установить выходные транзисторы на небольшие радиаторы. С краю запаивают клеммную колодку на 6 позиций для подачи питания, подключения RGB светодиодной ленты и переключателя. Полный перечень элементов приведен в таблице. В заключение хочется отметить, что количество выходных каналов в самодельной цветомузыкальной приставке можно увеличивать сколь угодно раз. Для этого нужно разбить весь частотный диапазон на большее количество секторов и пересчитать полосу пропускания каждого RC-фильтра. К выходам дополнительных усилителей подключить светодиоды промежуточных цветов: фиолетового, бирюзового, оранжевого. От такого усовершенствования цветомузыка своими руками станет только краше.

Источники:

http://zen.yandex.ru/media/id/5c1ad3c0b93e1500aa2b13d7/5e13c9982b616900b17b8bf9

http://www.studio.starport.ru/main/statyi/hd_3.php

http://radioskot.ru/publ/raznoe/skhema_svetovogo_pribora/18-1-0-119

http://ledjournal.info/shemy/cvetomuzyka.html

http://www.drive2.ru/b/459222027530690617/

Будет полезно:  Обзор силиконовой смазки для резиновых уплотнителей авто: фото и видео
Ссылка на основную публикацию